Search results for "Visual distraction"
showing 4 items of 4 documents
On the Visual Distraction Effects of Audio-Visual Route Guidance
2016
This is the first controlled quantitative analysis on the visual distraction effects of audio-visual route guidance in simulated, but ecologically realistic driving scenarios with dynamic maneuvers and self-controlled speed (N = 24). The audio-visual route guidance system under testing passed the set verification criteria, which was based on drivers’ preferred occlusion distances on the test routes. There were no significant effects of an upcoming maneuver instruction location (up, down) on the in-car display on any metric or on the experienced workload. The drivers’ median occlusion distances correlated significantly with median incar glance distances. There was no correlation between driv…
Refining distraction potential testing guidelines by considering differences in glancing behavior
2021
Driver distraction is a recognized cause of traffic accidents. Although the well-known guidelines for measuring distraction of secondary in-car tasks were published by the United States National Highway Traffic Safety Administration (NHTSA) in 2013, studies have raised concerns on the accuracy of the method defined in the guidelines, namely criticizing them for basing the diversity of the driver sample on driver age, and for inconsistent between-group results. In fact, it was recently discovered that the NHTSA driving simulator test is susceptible to rather fortuitous results when the participant sample is randomized. This suggests that the results of said test are highly dependent on the s…
Impacts of Touch Screen Size, User Interface Design, and Subtask Boundaries on In-Car Task's Visual Demand and Driver Distraction
2020
Visual distraction by secondary in-car tasks is a major contributing factor in traffic incidents. In-car user interface design may mitigate these negative effects but to accomplish this, design factors’ visual distraction potential should be better understood. The effects of touch screen size, user interface design, and subtask boundaries on in-car task's visual demand and visual distraction potential were studied in two driving simulator experiments with 48 participants. Multilevel modeling was utilized to control the visual demands of driving and individual differences on in-car glance durations. The 2.5” larger touch screen slightly decreased the in-car glance durations and had a diminis…
T9+HUD: Physical Keypad and HUD can Improve Driving Performance while Typing and Driving
2016
We introduce T9+HUD, a text entry method designed to decrease visual distraction while driving and typing. T9+HUD combines a physical 3x4 keypad on the steering wheel with a head-up-display (HUD) for projecting output on the windshield. Previous work suggests this may be a visually less demanding way to type while driving than the popular case which requires shifts of visual attention away from the road. We present a prototype design and report first results from a controlled evaluation in a driving simulator. While driving, the T9+HUD text entry rate was equal compared to a dashboard-mounted touchscreen device, but it reduced lane deviations by 70%. Furthermore, there was no significant di…